839 research outputs found

    Mapping the spin-dependent electron reflectivity of Fe and Co ferromagnetic thin films

    Full text link
    Spin Polarized Low Energy Electron Microscopy is used as a spin dependent spectroscopic probe to study the spin dependent specular reflection of a polarized electron beam from two different magnetic thin film systems: Fe/W(110) and Co/W(110). The reflectivity and spin-dependent exchange-scattering asymmetry are studied as a function of electron kinetic energy and film thickness, as well as the time dependence. The largest value of the figure of merit for spin polarimetry is observed for a 5 monolayer thick film of Co/W(110) at an electron kinetic energy of 2eV. This value is 2 orders of magnitude higher than previously obtained with state of the art Mini-Mott polarimeter. We discuss implications of our results for the development of an electron-spin-polarimeter using the exchange-interaction at low energy.Comment: 5 pages, 4 figure

    Evidence for Weyl fermions in a canonical heavy-fermion semimetal YbPtBi

    Full text link
    The manifestation of Weyl fermions in strongly correlated electron systems is of particular interest. We report evidence for Weyl fermions in the heavy fermion semimetal YbPtBi from electronic structure calculations, angle-resolved photoemission spectroscopy, magnetotransport and calorimetric measurements. At elevated temperatures where 4f4f-electrons are localized, there are triply degenerate points, yielding Weyl nodes in applied magnetic fields. These are revealed by a contribution from the chiral anomaly in the magnetotransport, which at low temperatures becomes negligible due to the influence of electronic correlations. Instead, Weyl fermions are inferred from the topological Hall effect, which provides evidence for a Berry curvature, and a cubic temperature dependence of the specific heat, as expected from the linear dispersion near the Weyl nodes. The results suggest that YbPtBi is a Weyl heavy fermion semimetal, where the Kondo interaction renormalizes the bands hosting Weyl points. These findings open up an opportunity to explore the interplay between topology and strong electronic correlations.Comment: 19 pages, 5 figures, Supplementary Information available with open access at https://www.nature.com/articles/s41467-018-06782-

    Bond stretching phonon softening and angle-resolved photoemission kinks in optimally doped Bi2Sr1.6La0.4Cu2O6 superconductors

    Full text link
    We report the first measurement of the optical phonon dispersion in optimally doped single layer Bi2Sr1.6La0.4Cu2O6+delta using inelastic x-ray scattering. We found a strong softening of the Cu-O bond stretching phonon at about q=(0.25,0,0) from 76 to 60 meV, similar to the one reported in other cuprates. A direct comparison with angle-resolved photoemission spectroscopy measurements taken on the same sample, revealed an excellent agreement in terms of energy and momentum between the ARPES nodal kink and the soft part of the bond stretching phonon. Indeed, we find that the momentum space where a 63 meV kink is observed can be connected with a vector q=(xi,0,0) with xi~0.22, which corresponds exactly to the soft part of the bond stretching phonon mode. This result supports an interpretation of the ARPES kink in terms of electron-phonon coupling.Comment: submited to PR

    A high-efficiency spin-resolved phototemission spectrometer combining time-of-flight spectroscopy with exchange-scattering polarimetry

    Full text link
    We describe a spin-resolved electron spectrometer capable of uniquely efficient and high energy resolution measurements. Spin analysis is obtained through polarimetry based on low-energy exchange scattering from a ferromagnetic thin-film target. This approach can achieve a similar analyzing power (Sherman function) as state-of-the-art Mott scattering polarimeters, but with as much as 100 times improved efficiency due to increased reflectivity. Performance is further enhanced by integrating the polarimeter into a time-of-flight (TOF) based energy analysis scheme with a precise and flexible electrostatic lens system. The parallel acquisition of a range of electron kinetic energies afforded by the TOF approach results in an order of magnitude (or more) increase in efficiency compared to hemispherical analyzers. The lens system additionally features a 90{\deg} bandpass filter, which by removing unwanted parts of the photoelectron distribution allows the TOF technique to be performed at low electron drift energy and high energy resolution within a wide range of experimental parameters. The spectrometer is ideally suited for high-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES), and initial results are shown. The TOF approach makes the spectrometer especially ideal for time-resolved spin-ARPES experiments.Comment: 16 pages, 11 figure

    A universal high energy anomaly in angle resolved photoemission spectra of high temperature superconductors - possible evidence of spinon and holon branches

    Get PDF
    A universal high energy anomaly in the single particle spectral function is reported in three different families of high temperature superconductors by using angle-resolved photoemission spectroscopy. As we follow the dispersing peak of the spectral function from the Fermi energy to the valence band complex, we find dispersion anomalies marked by two distinctive high energy scales, E_1=~ 0.38 eV and E_2=~0.8 eV. E_1 marks the energy above which the dispersion splits into two branches. One is a continuation of the near parabolic dispersion, albeit with reduced spectral weight, and reaches the bottom of the band at the gamma point at ~0.5 eV. The other is given by a peak in the momentum space, nearly independent of energy between E_1 and E_2. Above E_2, a band-like dispersion re-emerges. We conjecture that these two energies mark the disintegration of the low energy quasiparticles into a spinon and holon branch in the high T_c cuprates.Comment: accepted for publication in Phys. Rev. Let

    Instability of two dimensional graphene: Breaking sp2 bonds with soft X-rays

    Full text link
    We study the stability of various kinds of graphene samples under soft X-ray irradiation. Our results show that in single layer exfoliated graphene (a closer analogue to two dimensional material), the in-plane carbon-carbon bonds are unstable under X-ray irradiation, resulting in nanocrystalline structures. As the interaction along the third dimension increases by increasing the number of graphene layers or through the interaction with the substrate (epitaxial graphene), the effect of X-ray irradiation decreases and eventually becomes negligible for graphite and epitaxial graphene. Our results demonstrate the importance of the interaction along the third dimension in stabilizing the long range in-plane carbon-carbon bonding, and suggest the possibility of using X-ray to pattern graphene nanostructures in exfoliated graphene.Comment: 4 pages, 3 figures, Phys. Rev. B rapid communication, in pres
    • …
    corecore